EE49 Lecture

Tuesday Feb 13, 2018

Photoelectric Effect

- Emission of electron when light strikes a material
- Classical theory
 - More intense light will cause more energetic electrons
 - Experimentally false
- Quantum theory
 - Energy = h\nu
 - Need certain energy threshold (of min frequency) to emit electrons
 - Lower intensity means fewer photons means less current, not more energetic electrons

Solar Cells

- Engineered materials to produce significant useful currents
 - Si, other semiconductor materials, Perovskites, etc
- Costs have decreased a lot

Efficiency

- Efficiencies have increased a lot
- > 30% now
- Near theoretic limits

Explosion of growth!

EE49 IOT

• Solar cells in IOT

- To power electronics, microprocessors, etc
- Remote sensing, device control, ...
- Need backup battery or capacitor, so ckt works even when dark (for some time)

I-V curves of Solar Cells

Batteries

- Essential for IOT
- Many options
 - Footprint, weight
 - Operating range
 - Cost
 - Voltage, power
 - Capacity
 - Lifetime
 - Charging characteristics
 - Efficiency, leakage

Energy Density

Battery I-V curves

Now to the Blackboard

- Ideal Voltage source model
- Ideal Current source model
- Real battery model
- Internal resistance
- Load resistance
- Energy and Power
- Maximum power transfer
- Solar Cell Model